
Wooden Mathematics – Making abstraction tangible

Text: Milena Damrau and Martin Skrodzki | Section: On ‘Art and Science’

Abstract: Wooden artworks can be found throughout all art historical periods. Yet, they are scarcely 
found in the realm of mathematical art. This introductory article briefly presents the contributors and 
the structure of their contributions. In the following collection, each article exemplifies the interaction of 
wood as both an artistic medium and a means for the illustration of mathematical content.

Artists have turned to wood as a medium for about as long as humans create art. An earliest example of
a wooden artistic sculpture is the Shigir idol, carved approximately 12,000 years ago. Further works
include, e.g., sculptures, decorative carvings, and elaborate personal effects that can be found
throughout all art historical periods.

However, when it comes to interdisciplinary collaborations of mathematics and arts, wooden works are
clearly underrepresented. The Journal of Mathematics and the Arts lists, within their 15 completed
volumes since 2007, only three articles that mention wood in their abstracts. Similarly, throughout the
24 renditions of the Bridges conference, dedicated to mathematical art, only six papers address wood in
their titles. This seems to be a contradiction. How can something as ubiquitous as wood not have been
picked up at a larger scale in the mathematical art community? A possible answer could involve the
available tools and their accessibility. While it is nowadays easy to model a mathematical object digitally
and send its representation to a 3D print service, it is significantly harder to create the same object, say,
by employing a Computerized Numerical Control (CNC) machine or even by hand-carving it.

This article collection presents three different projects that build a wooden bridge between arts and
mathematics. All three have been presented at the combined annual meeting of the German 
Mathematical Society and the Austrian Mathematical Society, which took place online from September
27th until October 1st, 2021. The presentations were part of the minisymposium Mathematics and Arts
and formed the session on Woodwork there. Here, the three contributions are presented in a uniform
fashion, to highlight common ground but also the different approaches of the artists. Each article
explores the individual motivation of the artist to tackle the respective project. Furthermore, they
explain the choice for wood as a medium as well as the outcome of the artistic process. To round it off,
all contributions reflect on the lessons learnt during the project and give an outlook on how this project
will affect future work.

The contributors are as diverse as their contributions. Nicolas Bruscia is an assistant professor in the
department of architecture at the University of Buffalo. His project draws from the mathematical areas
of Topology and Differential Geometry, i.e., the study of the global shape of an object and how this
object is locally curved and bent. The results are wooden sculptures that are several meters high. Aaron
Fenyes is a postdoctoral researcher at the Institut des Hautes Études Scientifiques of Université Paris-
Saclay. Like Nicolas, he also studies the geometry of surfaces, but with an eye towards applications in
physics. From one of these applications, he derives a way to create aperiodic prints, i.e., prints that
follow a similar structure but never quite repeat themselves. In his project, these are realized as
woodblock prints. The final contribution of this collection also considers aperiodic structures. There, they
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come in the form of Penrose tilings, which provide a way to cover an arbitrarily large area with only two
types of tiles in a systematic way that, again, does not quite repeat itself. While Dave Murray-Rust,
Associate Professor in Human-Algorithm Interaction Design at TU Delft, provides the code base as well
as the mathematical expertise, Teresa Hunyadi, Delft-based sculptor, provides the knowledge on the
work-medium wood. Together, they explore the interactions of precise mathematics and imprecise
crafting processes and materials. 

All these contributors are “mathematical makers” according to the Mathematical Makers’ Manifesto by
Frank Farris. That is, because their “creations require mathematical knowledge as a key ingredient”
(Frank Farris, 2020). Yet, it is by their works that the underlying mathematical principles become
tangible to the uninitiated. Their use of wood, which is developed to different degrees in the three
projects, serves as an inspiration for future artistic exploration. By the structure of the articles,
similarities as well as differences manifest themselves and highlight the manifold possibilities that wood
as a medium offers to the mathematical art community.

References

Farris, Frank. 2020. Where does ‘mathematical making’ fit in our community? In: Notices of the
American Mathematical Society 67 (5): 614–615.

Recreational Mathematics in Form Making and Fabrication
Text: Nicholas Bruscia

Abstract: Some natural materials and formations are shaped by disclinations, or “defects” in their 
topological composition that force curvature into initially flat or planar elements. Originating in 
crystallography, their principles can be applied to materials at larger scales. This work applies them to 
thin plywood sheets, guiding the bending of basic geometric figures into complex surfaces with spatial 
qualities. 

Figure 1: Ollie He, Marissa Hayden, Tom Cleary, Sam Goembel, Nick Hills & Lovepreet Kuar: 
Disclination Paper Models (2021). Photos: Nicholas Bruscia, Marissa Hayden, Nick Hills &
Lovepreet Kaur.
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Introduction

Geometry provides a direct connection between mathematics and architecture, each involving the use
of drawings in both an analytical and projective process to both understand things as they are, and to
speculate on what they could be. At times, things described by mathematical concepts are intuitively
enacted by craftspeople. For example, some traditional baskets are woven with an intuitive
understanding of topologically induced curvature determined by the geometric pattern of the weave
(Martin 2015, 2). Similarly, an understanding of mathematical concepts may heighten one’s awareness
of natural occurrences. Imperfections found in crystalline solids lead to the discovery of the disclination,
i.e., a change in form within the structure of ordered materials. Examples include the protein coats of
viruses and the patterned coats of striped animals (Harris 1977, 130). Here within the acknowledgement
of a natural occurrence we find inspiration for synthetic acts; the materialization of the disclination
translated into a form making and fabrication technique. 

Motivation

Initial motivation to pursue surface disclinations at an architectural scale came as a byproduct of an
interest in the rigorous approach to geometry-driven design thinking at the Hochschule für Gestaltung 
Ulm (Maldonado and Bonsiepe 1965, 14). Paper modeling, a common technique used at the school,
effectively teaches basic geometrical concepts such as discrete Gaussian curvature, face-defects, and
angle deflections (Akleman, Chen, and Gross 2010, 4). A simple paper modeling study, turning a flat
square into a cone by overlapping two corners, led to our curiosity; what would happen if instead of
overlapping material, additional material were inserted into the square by slicing a thin sheet from the
center to the edge? This simple procedure creates negative curvature as the surface buckles into saddle-
like forms (Fig. 1); a promising flat-to-form construction technique that formed the basis for this
pedagogical design-build exercise.

Medium

The structures are built from two layers of 3mm thick plywood sheets. The two layer sandwich enables
an increase in scale well beyond the limitations of standard sheet dimensions, and since the seams
between parts never align between layers, bending can occur naturally without an awkward
accumulation of thickness. Further, the natural wood grain can be strategically oriented to the
structure’s geometry. Grain direction may allow some areas to accommodate tight bending radii, while
for other areas with less curvature it may be beneficial to bend against the grain for increased surface
stiffness. Since the topology dictates the form, and since wood tends toward flatness, the internal
bending stresses are distributed evenly when the structure is complete.
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Figure 2: Tyler Beerse, Ollie He, Jamie Jones, Bhalendu Guatam, Marissa Hayden, Josh
Barzideh, Tom Cleary, Sam Goembel, Lovepreet Kaur, Nick Hills, Camilo Copete & Ben Starr: 
Plywood Disclination Sculptures (2021). Photos: Nicholas Bruscia.

Outcome

Three large surface structures were built following several weeks of paper modeling experiments and
physics-based digital simulations (Fig 2). Beyond producing sculptural forms, the work may contribute to
a variety of fabrication techniques wherever developable materials are advantageous, and may point
toward further design explorations utilizing differential geometry. However, the mathematics at work
here may be simply observable, as it is enjoyable to turn paper into structure. Likewise, some puzzles
and games superficially concern math, yet what begins as a recreational exploration can later evolve
into a sophisticated research area (Chamberland 2015, 186). 

Lessons and Outlook

Some surface disclinations appear to be developable approximations of known minimal surfaces, in both
their discrete form and when tiled into larger periodic assemblies. It would be fascinating to discover
and articulate this relationship mathematically, but describe them by enumerating a basic, flat
geometric figure. When working with architecture students with as little of a background in mathematics
as myself, the discussion around a “3-circle surface” or an “18-square tiling” felt intuitive. The basic
figures dissolve into the surface requiring a bit of experience to find them, thinly veiling the
mathematical concept much like spotting the pentagons and heptagons in a tri-axial basket weave. The
visual complexity of the surfaces reduces into easily manufactured parts; portions of circles, triangles,
and squares are drawn flat and prepared for Computerized Numerical Control (CNC) fabrication. As the
parts come together at a large scale, the form takes shape automatically. This is new to the students
that are accustomed to traditional framing and cladding, resulting in enthusiasm for a more
mathematical approach to design and construction. While a proven mathematical connection to these
surfaces is shared here as a mere impression, our work was driven by a mutual appreciation for the
observable balance between physical forces and formulations.

References

Martin, Alison G. 2015. A basketmaker’s approach to structured morphology. In: Proceedings of the
International Association for Shell and Spatial Structures (IASS) Symposium 2015: Future Visions (29):

WWW.WISSENSCHAFT-KUNST.DE
w/k–Zwischen Wissenschaft & Kunst | ISSN 2628-1465

Page 4

https://between-science-and-art.com/wp-content/uploads/sites/4/1022/08/3.jpg


1–8.

Harris, William. 1977. Disclinations. In: Scientific American 237 (6): 130–145. 

Maldonado, Tomás and Gui Bonsiepe. 1965. Science and Design. In: Ulm Journal 10–11 (May 1965):
10–29.

Akleman, Ergun, Jianer Chen, and Jonathan L. Gross. 2010. Paper-Strip Sculptures. In: IEEE International
Conference on Shape Modeling and Applications (SMI) 2010, edited by J-P. Pernot et.al., 236–240. Aix-en-
Provenence. IEEE Computer Society.

Chamberland, Marc. 2015. Single Digits – In Praise of Small Numbers. Princeton & Oxford: Princeton
University Press.

Quasiperiodic prints from triply periodic blocks
Text: Aaron Fenyes

Abstract: Prints of irrational slice patterns show off the strengths of laser-cut relief printing, and help tell 
a story about how these patterns are made.

Figure 3: Aaron Fenyes: Triply Periodic Woodblock Prints (2019). Photos: Aaron Fenyes.

Introduction

A chessboard, a honeycomb, and an argyle cloth are doubly periodic patterns: they repeat along two
independent directions. The prints in Figure 3 show something stranger: quasiperiodic patterns, which
echo themselves regularly but never quite repeat.

Here’s the story I like to tell about how these prints were made. Imagine carving a block of wood into a
triply periodic sculpture: one that repeats along three independent directions, like a stack of oranges or
a box of sugar cubes. Mark a point on the sculpture with a pencil, and copy the mark across every
repetition. Slice the sculpture along an irrational plane—one that goes through one mark, but will never
hit another, no matter how far the pattern extends. Ink the cut surface and press it against a page. The
resulting print will be quasiperiodic. This story isn’t true, but the prints are true to it, and to the physics
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we’ll see it illustrates.

Motivation

I made these prints in 2019, during a frantically productive seventeen-day visit to the Illustrating 
Mathematics program at the Institute for Computational and Experimental Research in Mathematics
(ICERM) (Davis 2020, 145). When I arrived, I knew I wanted to try laser-cut relief printing, but I didn’t
know what to print. I was looking for striking black and white patterns that would make full use of the
laser cutter’s mechanized precision.

The next morning, Olga Paris-Romaskevich told me about a beautiful kind of pattern that appears in the
physics of crystals. Electrons in a crystal act more like waves than like particles; they’re distinguished
by their frequencies, not their positions. At low temperatures, the electrons puddle up in the lowest-
energy parts of frequency space, filling a triply periodic region. Figure 4 (center) shows the puddle of
electrons in a copper crystal.

Immersing the crystal in a magnetic field slices the puddle along parallel planes. The slices almost
always break into finite “lakes,” infinitely long “rivers,” or a mix of the two. In the late 1950s, physicist
Ilya Lifshitz and his colleagues realized that rivers profoundly affect the crystal’s electrical conductivity
(Grosberg, Halperin, and Singleton, 2017, 46–47). Twenty years later, Sergei Novikov led a push to
understand the slices’ shapes mathematically (Avila, Hubert, and Skripchenko, 2016, 1–5).

An irrational slice’s look and physical meaning hinge on subtle variations that echo on many scales.
Digital rendering and mechanical cutting could help capture those variations in print. I set out to print
slices of two triply periodic regions: a solid gyroid (Figure 4, left) and a grid of overlapping octahedra
that Paris-Romaskevich suggested (right).

Medium

Like many artworks, these prints have two stories of how they were made: the one I tell, and the one
that happened (Crease, 2009, 31–33; Waite, 2022).

In the story that happened, wood plays an inessential background role. Instead of making sculpture
slices physically, I rendered them digitally and laser-cut them onto blocks in relief. Finding materials
that would cut safely and print nicely took some care; I tried printmaking linoleum and laser-safe high-
density fibreboard (HDF). The latter can be made entirely from wood, and it retains a little of wood’s
absorbency, which is important for woodblock printing (Bull, 52:00).

In the story I tell, wood plays three important roles. It’s a traditional material for both sculpting and
relief printing, so it lends coherence to the idea of a carved wood block that can be either enjoyed as a
sculpture or destroyed to expose a print surface. It’s also a familiar material, adding sensory depth to
the story. For me, tactile impressions make an imagined object more concrete, memorable, and
engaging. Finally, the word “wood” is easy to say—a lot easier than the word “linoleum.” This helps the
story flow and streamlines discussion.
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Figure 4: Aaron Fenyes: Gyroid and overlapping octahedra (2019). Screenshots: Aaron
Fenyes.

Outcome

I like the way these prints highlight the subtlety of distinguishing lakes from rivers. The rivers that seem
to run through them sometimes narrow to thin rivulets; it’s easy to see how they might eventually break
into long lakes. To make this visible, I really needed the laser cutter’s precise rendering of the rivers’
echoing variations. The nuance is lost in my hand-carved version (Figure 3, center), though a skillful
carver might capture it (Bull, 2018, 18:07).

As I’d hoped, the prints have some of the depth I appreciate in hand-carved relief prints. They show the
textures of ink and paper, and the imperfections of hand printing.

Lessons and Outlook

It would be fun to print irrational slices of a physical sculpture. Many triply periodic solids, including the
gyroid, are amenable to 3d printing (DaveMakesStuff, 2021; Makino). You could even cast the sculpture
in liquid linoleum from a 3d-printed mold.

Wood can’t be 3d-printed or cast, but you could assemble a triply periodic wooden sculpture from
machined copies of a unit cell. The electron puddle in a copper crystal could make a good test piece,
because the unit cell in Figure 4 (center) looks amenable to five-axis machining. Machining a unit cell for
the solid gyroid would be harder.

Acknowledgments

I went into this project with little experience in laser cutting and none in relief printing. Colleagues at
Illustrating Mathematics and volunteers at the nearby makerspace AS220 guided me at every step.
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Carolyn Yackel and me.
Lindsay Whelan gave us a printshop orientation and a basic relief printing lesson.
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gave us the lovely results shown here.
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Material Deformations of Penrose Tiling
Text: Teresa Hunyadi and Dave Murray-Rust

Abstract: The heart of this work is exploring Penrose tiling. Penrose tilings are ways to completely cover 
an infinite plane with perfectly fitting shapes, in a pattern that never repeats – they have moments of 
local symmetry, where it may look like they are regular and ordered, but on a larger scale, this order is 
always disrupted. We use a technique that changes the shape of the tiles while keeping the underlying 
pattern to create a rich, generative space for artistic exploration.
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Figure 5: Dave Murray-Rust: Construction of Penrose tiling (2020). Screenshots: Dave
Murray-Rust.

Introduction 

Roger Penrose created the original tiling (P1) in 1974, but it required six different, complex shapes to fill
the plane. This was later reduced to two shapes – a kite and dart (P2) and two rhombuses (P3), the
version that we explore here. While one might think of adding tiles to the edge of a growing pattern, it is
easier to write a program that carries out inflation – starting from an initial set of shapes and repeatedly
dividing them to create finer and smaller patterns (Figure 5). 

Motivation

This project sprung from a shared investigation of patterns – in particular, simple patterns with long
range complexity – but also from adapting and making use of our situation during the first lockdown. At
that time, we found ourselves with access to a Computerized Numerical Control (CNC) mill and looked
for patterns that would fit the possibilities of this machine and our interests. Finding code for Penrose
tiles (Hill, 2015), then discovering Welberry’s process of deforming the tilings and seeing a connection
to Teresa’s work (Heaven and Earth, 2020), we moved onward. Working together gave us space for
mutual surprise, as we sparked ideas in each other. 

Teresa’s background is that of a wood sculptor, paying attention to the grain and character of wood as a
partner in the engagement with form. Dave works between algorithms and people and looks at what
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happens when computational ideas meet the world (Murray-Rust and Jungenfeld 2017, Hemment et. al
2019). Teresa is intrigued by relations between pattern and organic growth (Windows, 2019), whereas
Dave has invested time playing with iterative rules that generate images from simple shapes. Both of us
enjoy a sense of zooming in and zooming out, connecting details to the whole, and bridging different
ways of understanding the world.

Medium

We think of code, tools and material as the factors of this work. The code and data shaped the concepts
into machine geometries. The cutting processes (applied tools) between the metal bit and the wooden
sheet added its own language to the type and geography of lines. The varieties of materials themselves
and what they can do opened further directions to the work.

To start with we needed a light and readily available CNC suitable material. Working with various
plywood offcuts which have infinite variations of (growth) pattern visible, evoking its origin, made sense
to us. This became especially exciting when we found that it could be cut thinly enough to be
translucent while remaining connected, adding even more of its own, inherent, visual agency which gets
reflected in its properties – a journey of translation from a concept to a digital file to something tangible.
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Figure 6: Teresa Hunyadi & Dave Murray-Rust: Sequence images of the process (2020).
Photos: Teresa Hunyadi.

Outcome

One of the most exciting parts to come out of this collaboration was the interest in transforming and
translating patterns from one place to another (Figure 6). The diagrams on screen read very differently
to the valleys and ridges carved into wood – the geometry of the cutting tool negotiates with the
underlying mathematics. The pattern has a different feel as it moves from concept to code, from 2D
visuals to an ordered sequence of motions for the machine, and then into 3D objects. 
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Lessons and Outlook

We were surprised by how much the materialisation changed the sense of pattern; in some of the
pieces, the non-repeating nature of the Penrose tiling doesn’t come through as strongly as the simple
geometry of the pattern. In others, the deformation is a larger part of the visual story, and the sense of
symmetry is less clear. Exploring different materials, tools and light allowed different relations to
emerge between pattern, perception and space. Some of the more extreme deformations that break
geometric constraints would translate well to paper based works, where the crossing lines give depth.
Moulding with clay seems to be a rich space, where additional spatial deformations can be added.
Looking ahead, we are particularly interested to see how the patterns can be expanded to fill more
space.

Links to Artworks:

Teresa Hunyadi, Windows (2019): https://teresahunyadi.com/portfolio/windows/ 

Teresa Hunyadi, Heaven and Earth (2020): https://teresahunyadi.com/portfolio/heaven-and-earth/
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